352 research outputs found

    Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure

    Get PDF
    We derive analytical formulae for the Minkowski Functions of the cosmic microwave background (CMB) and large-scale structure (LSS) from primordial non-Gaussianity. These formulae enable us to estimate a non-linear coupling parameter, f_NL, directly from the CMB and LSS data without relying on numerical simulations of non-Gaussian primordial fluctuations. One can use these formulae to estimate statistical errors on f_NL from Gaussian realizations, which are much faster to generate than non-Gaussian ones, fully taking into account the cosmic/sampling variance, beam smearing, survey mask, etc. We show that the CMB data from the Wilkinson Microwave Anisotropy Probe should be sensitive to |f_NL|\simeq 40 at the 68% confidence level. The Planck data should be sensitive to |f_NL|\simeq 20. As for the LSS data, the late-time non-Gaussianity arising from gravitational instability and galaxy biasing makes it more challenging to detect primordial non-Gaussianity at low redshifts. The late-time effects obscure the primordial signals at small spatial scales. High-redshift galaxy surveys at z>2 covering \sim 10Gpc^3 volume would be required for the LSS data to detect |f_NL|\simeq 100. Minkowski Functionals are nicely complementary to the bispectrum because the Minkowski Functionals are defined in real space and the bispectrum is defined in Fourier space. This property makes the Minksowski Functionals a useful tool in the presence of real-world issues such as anisotropic noise, foreground and survey masks. Our formalism can be extended to scale-dependent f_NL easily.Comment: 16 pages, 5 figures, accepted for publication in ApJ (Vol. 653, 2006

    Peierls instability, periodic Bose-Einstein condensates and density waves in quasi-one-dimensional boson-fermion mixtures of atomic gases

    Full text link
    We study the quasi-one-dimensional (Q1D) spin-polarized bose-fermi mixture of atomic gases at zero temperature. Bosonic excitation spectra are calculated in random phase approximation on the ground state with the uniform BEC, and the Peierls instabilities are shown to appear in bosonic collective excitation modes with wave-number 2kF2k_F by the coupling between the Bogoliubov-phonon mode of bosonic atoms and the fermion particle-hole excitations. The ground-state properties are calculated in the variational method, and, corresponding to the Peierls instability, the state with a periodic BEC and fermionic density waves with the period π/kF\pi/k_F are shown to have a lower energy than the uniform one. We also briefly discuss the Q1D system confined in a harmonic oscillator (HO) potential and derive the Peierls instability condition for it.Comment: 9 pages, 3figure

    Boson-Fermion coherence in a spherically symmetric harmonic trap

    Full text link
    We consider the photoassociation of a low-density gas of quantum-degenerate trapped fermionic atoms into bosonic molecules in a spherically symmetric harmonic potential. For a dilute system and the photoassociation coupling energy small compared to the level separation of the trap, only those fermions in the single shell with Fermi energy are coupled to the bosonic molecular field. Introducing a collective pseudo-spin operator formalism we show that this system can then be mapped onto the Tavis-Cummings Hamiltonian of quantum optics, with an additional pairing interaction. By exact diagonalization of the Hamiltonian, we examine the ground state and low excitations of the Bose-Fermi system, and study the dynamics of the coherent coupling between atoms and molecules. In a semiclassical description of the system, the pairing interaction between fermions is shown to result in a self-trapping transition in the photoassociation, with a sudden suppression of the coherent oscillations between atoms and molecules. We also show that the full quantum dynamics of the system is dominated by quantum fluctuations in the vicinity of the self-trapping solution.Comment: 16 pages, 14 figure

    Apparent Clustering of Intermediate-redshift Galaxies as a Probe of Dark Energy

    Full text link
    We show the apparent redshift-space clustering of galaxies in redshift range of 0.2--0.4 provides surprisingly useful constraints on dark energy component in the universe, because of the right balance between the density of objects and the survey depth. We apply Fisher matrix analysis to the the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), as a concrete example. Possible degeneracies in the evolution of the equation of state (EOS) and the other cosmological parameters are clarified.Comment: 5 pages, 3 figures, Phys.Rev.Lett., replaced with the accepted versio

    Hard to "tune in": neural mechanisms of live face-to-face interaction with high-functioning autistic spectrum disorder

    Get PDF
    Persons with autism spectrum disorders (ASD) are known to have difficulty in eye contact (EC). This may make it difficult for their partners during face to face communication with them. To elucidate the neural substrates of live inter-subject interaction of ASD patients and normal subjects, we conducted hyper-scanning functional MRI with 21 subjects with autistic spectrum disorder (ASD) paired with typically-developed (normal) subjects, and with 19 pairs of normal subjects as a control. Baseline EC was maintained while subjects performed real-time joint-attention task. The task-related effects were modeled out, and inter-individual correlation analysis was performed on the residual time-course data. ASD-Normal pairs were less accurate at detecting gaze direction than Normal-Normal pairs. Performance was impaired both in ASD subjects and in their normal partners. The left occipital pole (OP) activation by gaze processing was reduced in ASD subjects, suggesting that deterioration of eye-cue detection in ASD is related to impairment of early visual processing of gaze. On the other hand, their normal partners showed greater activity in the bilateral occipital cortex and the right prefrontal area, indicating a compensatory workload. Inter-brain coherence in the right IFG that was observed in the Normal-Normal pairs (Saito et al., 2010) during EC diminished in ASD-Normal pairs. Intra-brain functional connectivity between the right IFG and right superior temporal sulcus (STS) in normal subjects paired with ASD subjects was reduced compared with in Normal-Normal pairs. This functional connectivity was positively correlated with performance of the normal partners on the eye-cue detection. Considering the integrative role of the right STS in gaze processing, inter-subject synchronization during EC may be a prerequisite for eye cue detection by the normal partner

    Interaction of temperature with hematocrit level and pH determines safe duration of hypothermic circulatory arrest

    Get PDF
    AbstractObjectivePrevious studies have demonstrated that both hematocrit level and pH influence the protection afforded by deep hypothermic circulatory arrest. The current study examines how temperature modulates the effect of hematocrit level and pH in determining a safe duration of circulatory arrest. The study also builds on previous work investigating the utility of near-infrared spectroscopy as a real-time monitor of cerebral protection during circulatory arrest.MethodsSeventy-six piglets (9.3 ± 1.2 kg) underwent circulatory arrest under varying conditions with continuous monitoring by means of near-infrared spectroscopy (hematocrit level of 20% or 30%; pH-stat or alpha-stat strategy; temperature of 15°C or 25°C; arrest time of 60, 80, or 100 minutes). Neurologic recovery was evaluated daily by a veterinarian, and the brain was fixed in situ on postoperative day 4 to be examined on the basis of histologic score in a blinded fashion.ResultsMultivariable analysis of total histologic score revealed that higher temperature, lower hematocrit level, more alkaline pH, and longer hypothermic circulatory arrest duration were predictive of more severe damage to the brain (P < .01). Regression modeling revealed that higher temperature exacerbated the disadvantage of a lower hematocrit level and longer arrest times but not pH strategy. Normalized oxyhemoglobin nadir time, derived from near-infrared spectroscopy, was positively correlated with neurologic recovery on the fourth postoperative day and with total histologic injury score (P < .0001).ConclusionHematocrit level and pH, as well as temperature, determine the safe duration of hypothermic circulatory arrest. Near-infrared spectroscopy is a useful real-time monitor of safe duration of circulatory arrest

    The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes

    Get PDF
    Long non-coding (lnc) RNAs are numerous and found throughout the mammalian genome, and many are thought to be involved in the regulation of gene expression. However, the majority remain relatively uncharacterised and of uncertain function making the use of model systems to uncover their mode of action valuable. Imprinted lncRNAs target and recruit epigenetic silencing factors to a cluster of imprinted genes on the same chromosome, making them one of the best characterized lncRNAs for silencing distant genes in cis. In this study we examined silencing of the distant imprinted gene Slc22a3 by the lncRNA Airn in the Igf2r imprinted cluster in mouse. Previously we proposed that imprinted lncRNAs may silence distant imprinted genes by disrupting promoter-enhancer interactions by being transcribed through the enhancer, which we called the enhancer interference hypothesis. Here we tested this hypothesis by first using allele-specific chromosome conformation capture (3C) to detect interactions between the Slc22a3 promoter and the locus of the Airn lncRNA that silences it on the paternal chromosome. In agreement with the model, we found interactions enriched on the maternal allele across the entire Airn gene consistent with multiple enhancer-promoter interactions. Therefore, to test the enhancer interference hypothesis we devised an approach to delete the entire Airn gene. However, the deletion showed that there are no essential enhancers for Slc22a2, Pde10a and Slc22a3 within the Airn gene, strongly indicating that the Airn RNA rather than its transcription is responsible for silencing distant imprinted genes. Furthermore, we found that silent imprinted genes were covered with large blocks of H3K27me3 on the repressed paternal allele. Therefore we propose an alternative hypothesis whereby the chromosome interactions may initially guide the lncRNA to target imprinted promoters and recruit repressive chromatin, and that these interactions are lost once silencing is established

    Three-point Correlation Functions of SDSS Galaxies in Redshift Space: Morphology, Color, and Luminosity Dependence

    Full text link
    We present measurements of the redshift--space three-point correlation function of galaxies in the Sloan Digital Sky Survey (SDSS). For the first time, we analyze the dependence of this statistic on galaxy morphology, color and luminosity. In order to control systematics due to selection effects, we used rr--band, volume-limited samples of galaxies, constructed from the magnitude-limited SDSS data (14.5<r<17.514.5<r<17.5), and further divided the samples into two morphological types (early and late) or two color populations (red and blue). The three-point correlation function of SDSS galaxies follow the hierarchical relation well and the reduced three-point amplitudes in redshift--space are almost scale-independent (Qz=0.51.0Q_z=0.5\sim1.0). In addition, their dependence on the morphology, color and luminosity is not statistically significant. Given the robust morphological, color and luminosity dependences of the two-point correlation function, this implies that galaxy biasing is complex on weakly non-linear to non-linear scales. We show that simple deterministic linear relation with the underlying mass could not explain our measurements on these scales.Comment: order of figures are changed. 9 pages, 15 figure

    Spatial Clustering of Galaxies in Large Datasets

    Full text link
    Datasets with tens of millions of galaxies present new challenges for the analysis of spatial clustering. We have built a framework that integrates a database of object catalogs, tools for creating masks of bad regions, and a fast (NlogN) correlation code. This system has enabled unprecedented efficiency in carrying out the analysis of galaxy clustering in the SDSS catalog. A similar approach is used to compute the three-dimensional spatial clustering of galaxies on very large scales. We describe our strategy to estimate the effect of photometric errors using a database. We discuss our efforts as an early example of data-intensive science. While it would have been possible to get these results without the framework we describe, it will be infeasible to perform these computations on the future huge datasets without using this framework.Comment: original documents at http://research.microsoft.com/scripts/pubs/view.asp?TR_ID=MSR-TR-2002-8
    corecore